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Supplementary Fig. 1. CORENODE development. A, Data and computational flowchart. B, SE signal and 
ranks in a representative primary patient sample with high MHC type II expression. C, SE presence in 49 

primary AML samples. Data in B and C are from Ref.(9). D, Transcription factors identified as selective AML 
dependencies by the Broad Cancer Dependency Map project. The heatmap reflects probability of 

dependency > 0.5. Forty TF genes with dependency probability >0.5 in 3 or more AML cell lines are shown. 
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Supplementary Fig. 2. CORENODE identifies the same 4 TFs as top MHC-II regulators regardless of 
the CR TF set. Heatmaps of edge scores (ES) and directional derivatives (DD) representing computationally 

established edges between target genes (columns) and TFs (rows, sorted by average ES). Higher ES 
corresponds to higher confidence edges, and DD predicts amplitude and directionality (positive vs. negative) 

of TF-target regulation. Panels A and B represent CORENODE output derived from an extended set of 31 
TFs defined in our parallel work on AML core regulatory circuitry (16); A depicts ES and B depicts DD. 

Panels C and D represent CORENODE output derived from a 37-TF set representing all selectively 
essential AML TFs above the minimal average expression cutoff (i.e. within the 9000 top expressed genes) 

regardless of SE association; C depicts ES and D depicts DD. 
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Supplementary Fig. 3. Prediction of MHC-II gene expression by CORENODE. A, Combinatorial 
regression of MHC-II genes. Comparison of leave-one-out error (LOO) and r2 for 1-, 4- and 5-mers 

describing expression of 6 MHC type II genes (HLA-DPA1, HLA-DBP1, HLA-DQA1, HLA-DQB1, HLA-DRA, 
HLA-DRB1). 5-mers where CIITA is the 5th term display the smallest LOO and the largest r2 values 

indicating improved fit without overfitting. B, Gene expression in two populations of the TCGA dataset. The 
blue population represents patient samples with below-median expression of IRF8 and MEF2C and above-

median expression of MYB and MEIS1, and the red population represents patient samples with the opposite 
pattern of TF expression. 
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Supplementary Fig. 4. TF knockouts and MYB inhibition. A, Validation of gene knockouts. MV411 cells 
were electroporated with RNPs targeting the indicated genes and protein depletion was verified by Western 

blot. Unless indicated otherwise, imaging was performed 72 hours post electroporation. B, Relationship 
between CIITA expression and HLA-DRA expression in AML cell lines. Expression data were downloaded 

from the CCLE database (https://sites.broadinstitute.org/ccle/). Cell lines used for TF knockout experiments 
are marked in red. C, Treatment of THP1 cells with mebendazole for 48 hours induced surface expression of 

MHC-II, measured by FACS with a pan-specific anti-HLA-DP/DQ/DR antibody. 
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Supplementary Fig. 5. Histone and TF architecture in the MHC-II locus. A, H3K27ac metatracks. Red, 
tracks from 10 AML patients with the highest MHC type II expression; blue, tracks from the 10 AML patients 

with the lowest MHC type II expression. Each metatrack is a collection of semi-transparent area plots 
representing individual samples and the average profile is represented by a thick line. B, H3K27 acetylation 

and TF binding in the MHC type II locus. Green tracks are H3K27ac metatracks composed by overlaying 
semi-transparent area plots representing 2 biological replicates of the indicated TF knockouts compared to a 

control locus-targeting sgRNA (AAVS1). The average profile is represented by a thick line. Grey tracks 
represent binding of the indicated TFs. All of the shown ChIP-seq experiments were performed in MV411 

except for the CIITA track which was downloaded from Ref.(38) and represents a lymphoid cell line. C, 
Density plots of spike-in controlled H3K27ac ChIP-seq experiment showing genome-wide histone 

acetylation changes after MYB knockout, compared to a control locus-targeting sgRNA (AAVS1). Each row 
represents a single peak. D, Heatmap of aggregated SE activities associated with the MHC-II locus and the 

tetrad TFs. H3K27ac ChIP-seq data are from Ref.(9). Multiple SEs were called by ROSE2 for each locus 
and their signal was aggregated and z-scored. Rows and columns were hierarchically clustered by Pearson 
correlation with complete linkage. 
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Supplementary Fig. 6. The role of CIITA in MHC-II regulation. A, Correlation between CIITA and MHC-II 
gene expression in the Beat AML dataset. Note that these plots represent Pearson correlation and are 

different from CIITA 1-mers (such as the one in Fig. 2A) which have a quadratic term in addition to a linear 
term. B, Validation of a CIITA knockout in MV411 cells by PCR amplification followed by agarose gel 

electrophoresis with ethidium bromide staining. Three closely positioned gRNAs were used for the CIITA 
knockout, producing a size shift on gel electrophoresis indicating complete editing efficiency in the bulk 

population and a homogenous excision in the clonally selected line. 
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Supplementary Fig. 7. Global network decomposition by CORENODE identifies TF modules. A, A 

genome-wide heatmap and clustering of edges. Edges with scores ³8 were converted to 1 for predicted 

positive regulation (DD > 0) or -1 for negative regulation (DD < 0). The resulting matrix was clustered by 
Pearson correlation (CR TFs (columns): hierarchical, complete linkage; target genes (rows): k-means with 

k=15) using Morpheus (https://software.broadinstitute.org/morpheus). B, A TF similarity matrix produced 
from the regulation matrix depicted in panel A. 
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Supplementary Fig. 8. The GvL module. A, Gene-set enrichment analysis of the GvL module. The ChEA 
dataset shows enrichment of TF binding in the gene promoters, whereas the KEGG dataset shows gene 

pathway enrichment. Enrichments were computed using Enrichr (43). B, Expression of the GvL module in 
paired primary and post-chemotherapy relapse patient samples from Ref.(3). 
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Supplementary Fig. 9. MHC-II expression and myeloid differentiation status. A, Expression of the 19 
myeloid markers in sorted normal progenitors. B, Normal progenitors and leukemic cells are plotted 

according to their indices of myeloid and lymphoid development (see Supplementary Note for details). 
Panels A and B were computed with data from Ref.(42). C and D, Poor correlation MHC-II expression and 

myeloid differentiation state. A composite score reflecting MHC-II expression (HLA index) is plotted against 
the index of myeloid development using Beat AML (15) and TCGA (17) datasets, respectively. 




